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INTRODUCTION

Over the past two decades, there have been several initiatives to
create volunteer-based seismic networks. The Personal Seismic
Network, proposed around 1990, used a short-period seismo-
graph to record earthquake waveforms using existing phone
lines (Cranswick and Banfill, 1990; Cranswick et al., 1993).
NetQuakes (Luetgert et al., 2010) deploys triaxial Micro-
Electromechanical Systems (MEMS) sensors in private homes,
businesses, and public buildings where there is an Internet con-
nection. Other seismic networks using a dense array of low-cost
MEMS sensors are the Community Seismic Network (Clayton
et al., 2012; Kohler et al., 2013) and the Home Seismometer
Network (Horiuchi et al., 2009). One main advantage of com-
bining low-cost MEMS sensors and existing Internet connec-
tion in public and private buildings over the traditional
networks is the reduction in installation and maintenance costs
(Koide et al., 2006). In doing so, it is possible to create a dense
seismic network for a fraction of the cost of traditional seismic
networks (D’Alessandro and D’Anna, 2013; D’Alessandro,
2014; D’Alessandro et al., 2014).

A rapidly deployable and highly mobile seismic network
can collect enormous volumes of data at high spatial density
during an aftershock sequence following major earthquakes
(Naito et al., 2013). Although the low-cost seismic networks
described above were primarily designed to detect and charac-
terize earthquakes, the networks have also been used for other
purposes such as to monitor building health in Kohler et al.
(2013). These types of low-cost networks may also have other
potential applications such as detecting landslides (Azzam et al.,
2011) and locating explosions (Taylor et al., 2011).

The Quake-Catcher Network (QCN) is another variant of
a cyber-social seismic network, which has been operating since
2008. Cochran, Lawrence, Christensen, and Chung (2009)
and Cochran, Lawrence, Christensen, and Jakka (2009) de-
scribe the implementation that uses a client software phase-
picking algorithm that is based on a ratio of short-term average
and long-term average of the signal (Earle and Shearer, 1994),
and based on the communication between the sensor data and
the server that is provided by Berkeley Open Infrastructure for
Network Computing (BOINC) (Anderson and Kubiatowicz,
2002; Anderson, 2004; Christensen et al., 2005; Anderson
et al., 2006).

QCN has thousands of sensors deployed around the world
(see Fig. 1a) that are installed and hosted by volunteers. In ad-
dition, several targeted rapid aftershock deployments have been
initiated by QCN including the 2010 Mw 8.8 Maule, Chile,
earthquake (Chung et al., 2011) and the Mw 7.1 Darfield,
New Zealand, earthquake (Cochran et al., 2012; Lawrence
et al., 2014). Following the 3 September 2010, Mw 7.1 Dar-
field earthquake, the QCN real-time detection system was
quickly implemented and began to detect earthquakes begin-
ning on 25 September 2010 (Lawrence et al., 2014). One hun-
dred and ninety-two QCN sensors were installed in and around
Christchurch, New Zealand, to detect aftershocks (see Fig. 1b).
The real-time system was initiated to rapidly detect, locate, and
characterize events recorded by QCN sensors. The rapid earth-
quake detection system has been improved incrementally since
then. Because the system was only designed to work in real
time, the improvements in the code could only be tested by
events that occurred after the changes had been implemented.

The QCN detection algorithm associates a given trigger to
all other triggers occurring within 90 s and 200 km of the origi-
nal trigger. The algorithm considers a trigger as a probable
event if more than five triggers are correlated. The code then
performs a grid search for the event origin time and location.
Given the event time and location, we calculate the travel-time
misfit for each station and the average travel-time misfit for the
array (see Fig. 2). If the average misfit is less than 2.0 s, the code
considers the event to be a likely earthquake.

Here, we describe results using a recently developed fea-
ture of the QCN system that supports retrospective runs (off-
line) of past data. The ability to simulate past events allows us
to test and verify event detection algorithms and supports more
rapid algorithm development. The QCN system has archived
sensor data since 2009; therefore, we can potentially identify
new earthquakes recorded by the network prior to September
2010, when the real-time detection algorithms were imple-
mented. The objective of this study is to describe the retrospec-
tive simulator, and use the simulator to optimize the set of
parameters used to identify events by validating the results
against published earthquake catalogs. The goal of this study
is to determine (1) whether a network of low-resolution sen-
sors operating in noisy environments can provide useful earth-
quake detections, (2) the parameters that have the largest
impact on detections, and (3) the optimal set of detection
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parameters for the array operating near Christchurch,
New Zealand.

The QCN retrospective simulator uses simulated time
steps (ideally every second) to emulate the real-time system.
Each time step simulates a real-time single second in an accel-
erated way (approximately 1000 times faster). The simulator
loads the triggers from the 200 s prior to the simulated time.
The earthquake detection software is then modified, and we
test the new parameters by simulating past sensor data. The
detection algorithm used here is designed for very rapid event
detection and characterization of earthquakes for rapid event
awareness and/or earthquake early warning; thus, the method
is different from that employed for routine event detection by
most seismic networks. The optimal parameters we determine
here are tuned for lower resolution sensors deployed in noisy
environments, so some tuning of the detection parameters may
be needed if more traditional seismic data are used.

We first present improvements to the software and de-
scribe the retrospective (offline) simulator in the Simulation
Algorithm and Improvements in the QCN Software section.
In the Verification of the New Code section, we apply the sim-
ulator to past data recorded between 25 September 2010 to 1
August 2013 to verify the offline code, including improve-

ments to the code. In the Validation with NEIC and GNS
Catalogs section, we compare the origin time and locations of
events from the real-time system and the offline system to GNS
Science’s GeoNet (Geonet, 2010–2013) and National Earth-
quake Information Center (NEIC, 2010–2013) catalogs.
Retrospective Runs section presents new earthquakes recovered
by simulating data before 25 September 2010, prior to the im-
plementation of the real-time event detection. In Parameter
Studies section, we rerun the offline code using the optimal
parameter values to assess the detection times and accuracy of
event times and locations. We summarize the findings in the
Summary section.

SIMULATION ALGORITHM AND IMPROVEMENTS
IN THE QCN SOFTWARE

The QCN software is made up of two parts: (1) the client-side
program and (2) the server-side program. A client-side program
runs on volunteer computers, detecting strong new motions
and sending digital trigger data to the QCN server. The server-
side program monitors the incoming trigger signals for possible
events. In this study, we improve the server-side software to
maximize the robustness, efficiency, and maintainability of the
code. Specifically, the code has been rewritten in C�� (prior
version utilized legacy C code), several bug fixes are applied,
and we simplify several conditional statements. Throughout
the article, the code reflecting these changes is identified as
version 2.0, whereas version 1.x (or online) denotes the opera-
tional server code in the real-time system.

The updated software detects additional earthquakes that
version 1.x missed. In this study, all simulations obtained by
version 2.0 were executed in offline mode whereas version
1.x results have been taken from the real-time system (online
mode). We use offline code and version 2.0 synonymously in
this article.

The pseudocode of the simulation algorithm is presented
in Figure 2, and we describe the algorithm below in general
terms. For a given simulation start and end time, each loop
simulates a time advance of one second. Inside the loop (lines
6–24 in Fig. 2), the code queries the trigger memory table for
the previous 200 s (same as the real-time system) of simulated
real time. Looping over every single pair of triggers, the algo-
rithm finds correlated triggers (lines 9–12) by checking three
conditions: (1) the sensor pair is separated by less than the
maximum correlation distance (Dmax), (2) the time difference
of the pair is within the maximum correlation time (Tmax), and
(3) the time difference between the two triggers is smaller than
the propagation time of an S wave (plus 3 s) for the straight-
line distance between the two stations. The default values of
Dmax and Tmax are 200 km and 90 s (see Table 1 for the other
default simulation parameters). When the total count of cor-
related triggers is greater than or equal to the minimum cor-
relation count (CNTmin) (set at the default value, five), a
probable earthquake is declared. To locate the event (line 16),
the code undertakes a recursive 3D grid search that minimizes
the misfit between the predicted and actual wave arrivals. After

▴ Figure 1. (a) The triggers received from the Quake-Catcher
Network (QCN) sensors (blue triangles) are given around the
world. (b) The QCN sensor distribution and the QCN true-positive
events (the locations are GNS catalog locations) around Christ-
church and New Zealand following the Darfield earthquake (3
September 2010).
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▴ Figure 2. The offline QCN algorithm using the past QCN data for simulating the online QCN system.
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finding the event location and origin time, we measure the ob-
served time difference (dobsi , the recorded time difference be-
tween sensor i and j), the estimated time difference (desti , the
computed time difference using the Crust_2.0 velocity model,
Laske et al., 2012, between sensor i and sensor j), and the cor-
relation coefficient r2 (see line 17 in Fig. 2). The correlation
coefficient is computed for x and y data sets as follows:

r2 � �P xy − nx̄ ȳ�2
�P x2 − nx̄2��P y2 − nȳ2� ; �1�

in which n represents the total number of elements in x and y
datasets, and x̄ and ȳ are the averaged values from the data sets.
To check, we compute the average travel-time misfit (line 18),
first summing the differences and then averaging them
(d̄ � 1

N

PN
i�1 dobsi − desti , in which dobsi is the observed arrival

time at a station i, and desti is the estimated arrival at station i
based on the event location). The code flags an event as a likely
earthquake if the maximum average travel-time misfit
(MISFITmax) is less than or equal to some threshold value (set
in version 1.x to be 2 s) and the correlation, r2, is greater than
0.5. The code increments the simulated time by 1 s (line 23),
and repeats all the above steps until the end of simulation (line
24). The offline algorithm reconstructs the timing of trigger
arrivals from archived data (lines 3–4); otherwise, the code
is the same for both online and offline versions.

VERIFICATION OF THE NEW CODE

We first verify the new code by comparing results with version
1.x. Although the sensor data have been flowing into the QCN
server since 2008, we are limited to the period after 25 Sep-
tember 2010, when the real-time detection algorithm was first
implemented. The last date included in the simulations de-
scribed herein is 1 August 2013. The server-side code has
undergone many changes since its inception. We label the past
code as version 1.x. Over the years, version 1.x has evolved, and
versioning of the code was not implemented because modifi-
cations were made. For this reason, it is hard to identify which
parameters were implemented in the code for a specific event.
The version 1.x code should be envisaged as the past code at a

time of a specific event. Our assumption is that performance of
the system improved through time since the real-time system
was initiated in September 2010, but there is no way to verify
this assumption.

The two codes perform quite similarly, yielding similar but
not identical results. We present (1) detection time, (2) event
time, (3) horizontal location, and (4) depth differences for
matched events between the online system and the simulation
of the version 2.0 code. The simulation of 3 years’ worth of
data takes about 12 h on a Intel Xeon (1.66 GHz) machine.
We define detection time as the total time between the event
origin time and the server-side detection time, including the
travel times of waves to the sensors, the delays (network la-
tency, on average about 2–3 s) that occurred in the transmis-
sion, and the computation time (on average, less than a second)
in the QCN server. We compare the difference in the detection
times for the two codes in Figure 3a. The detection times show
that version 2.0 performs better on average. Based on the sim-
ulation results by version 2.0, the average detection time for all
the events is about 10 s; and 95% of all of the events are de-
tected in less than 14 s. It is difficult to pinpoint the cause of
the large detection time differences between the two codes be-
cause the exact parameters used by version 1.x of the code for
particular events are unknown.

We show the absolute difference between event origin
time from both codes in Figure 3b; the origin times of about
60% of events are within 1 s. Only about 7% of events show
origin times that differ by more than 3 s. The difference in the
horizontal distance (e.g., epicentral distance) and depth follows
similar trends such that for the majority of events the two co-
des are in close agreement with one another (see Fig. 3c,d).

Code-to-code comparison of the above quantities verifies
that the version 2.0 of the code detects earthquakes faster, and
differences between event origin times, horizontal location,
and depth are minimal. We attribute some of the difference
in event information to the use of the Crust_2.0 velocity model
(Bassin et al., 2000; Laske et al., 2012) used in version 2.0,
compared with the simple 1D velocity used in Version 1.x.

VALIDATION WITH NEIC AND GNS CATALOGS

Next, using NEIC (NEIC, 2010–2013) and GNS Science cat-
alogs (Geonet, 2010–2013), we investigate whether version 2.0
of the code improves the rapidly determined origin time and
location of the events. The majority of earthquakes recorded by
the QCN system occurred in New Zealand following the Dar-
field earthquake. Most other recorded earthquakes are occurred
in Chile and the United States. Because the majority of re-
corded events occurred in New Zealand, following the 2010
Mw 7.2 Darfield, New Zealand, earthquake, we include the
GNS catalog in addition to the NEIC catalog. When we find
an event in both catalogs, the reference event is taken from the
GNS catalog because this catalog uses additional local data to
locate events.

We consider four event characteristics in this section: the
origin time, the epicenter, the depth, and the magnitude.

Table 1
The Default and Optimal Parameters Used in This Study

Parameter Values
Default

Parameters
Optimal

Parameters
Minimum Correlation Count
(CNTmin)

5 5

Maximum Correlation Distance
(Dmax)

200 km 100 km

Maximum Correlation Time
(Tmax)

90 s 30 s

Maximum average travel-time
misfit (MISFITmax)

2 s 1 s
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Figure 4a shows the event origin time difference between the
QCN system and the available catalog (either GNS or NEIC)
for both version 1.x and version 2.0 detections. The event ori-
gin time differences are clustered around a peak at about 1 s
difference. Both codes perform well and estimate the origin
times of a majority of events within 3 s of the catalog-reported
origin time. We continue the catalog comparison and examine
differences in horizontal (epicentral) distance between the
matched events. According to Figure 4b, the distribution of
differences between horizontal distance difference for version
1.x and 2.0 is small; however, version 2.0 performs slightly bet-
ter, detecting locations closer to the catalog locations for a
slightly higher percentage of events. Depth is the most difficult
value to determine in an event. Both codes deviate similarly
from the catalogs in estimating event depths. Most detections
(about 90% of them) are within 8 km depth and 12 km epi-
central distance to the corresponding catalog event (Fig. 4b,c).

To compute the magnitude of events, the QCN software
uses peak ground acceleration (PGA) values at the trigger time
and 1, 2, and 4 s after the trigger (see Fig. 5). Typically, at the
trigger time, the corresponding PGA value is so small that with-
out using subsequent values at 1, 2, and 4 s, the magnitude
relation underestimates the magnitude of the event. Until
March 2013, we only saved the PGA values at the trigger time
but not the PGA values at 1, 2, and 4 s after the trigger. Because
of the missing PGA values in the database, we do not compare
magnitudes at this time.

RETROSPECTIVE RUNS

Version 2.0 of the code is also applied to archived data from 1
September 2009 to 1 August 2013. The number of total events,
true-positive events (confirmed events from GNS or NEIC
catalogs), and false-positive events are presented in Table 2.
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▴ Figure 3. Distribution of (a) difference in detection time, (b) difference in event origin time, (c) difference in horizontal (epicentral)
distances, and (d) difference in depths are plotted for the matched events between the version 1.x and version 2.0. Comparison is for
events that occurred between 25 September 2010, when the online QCN real-time system detected its first earthquake, to 1 August 2013.
The dashed line represents 95% confidence level.
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We show the results for three different date intervals: (1) 1
September 2009 to 8 September 2010, prior to the installation
of sensors in New Zealand, (2) 9–24 September 2010, when
online detection was not implemented but over 100 sensors
recorded ground motions from the Darfield, New Zealand,
aftershock sequence, and (3) 25 September 2010 to 1 August
2013, the time period that version 1.x was live. During the
period from 1 September 2009 to 8 September 2010, version
2.0 recovers 94 events, 11 of which are confirmed in the NEIC
catalog, whereas 83 of them were found to be false-positive
events (we checked the waveform manually to confirm this).
During this time period, QCN was using lower-resolution sen-
sors (10–12 bit) (please refer to Table 3 for more information
about the USB sensors used in this study). Version 2.0 of the
code detects many false-positive events because the high noise
levels of the old sensors causes a large number of false triggers.
During the period from 9 to 24 September 2010, we recovered
42 events, confirmed with the GNS catalog. Forty of the re-
covered events are confirmed in the GNS catalog, and only two
are false events. From 25 September 2010 to 1 August 2013,
version 2.0 detects 228 true-positive events (17 false-positive
events), with 16 additional events confirmed during this
period. Between 1 September 2009 and 1 August 2013, the
version 2.0 code recovers a total of 67 new confirmed events
in the combined NEIC and GNS catalogs. Although version
2.0 of the code finds many additional earthquakes for the same
time period, version 1.x detects fewer false-positive events (see
Table 2).

The majority of the events detected by QCN were after-
shocks of the Darfield, New Zealand, earthquake. Through
comparison with the GNS catalog, we determine the percent-
ages of events detected and missed. We limit the GNS catalog
search to events within 75 km of the epicenter of the Darfield,
New Zealand, earthquake; QCN sensor network was clustered
at epicentral distances between 20 and 40 km northeast of the
mainshock epicenter. In addition, we consider only events with
magnitudes greater than 3; QCN sensors typically are not sen-
sitive enough to detect lower-magnitude events (Evans et al.,
2014). The events are sorted into four magnitude bins: 3–4, 4–
5, 5–6, and 6�. To match true-positive events, we take the
reference magnitude from the GNS catalog, but for false-pos-
itive events (not matching any catalog), we use the QCN-de-
termined magnitudes. Figure 6a presents the distribution of
true-positive events from this simulation. The QCN offline
code matches 96 of 2743 GNS events (3.5%) varying in mag-
nitude range from 3 to 4. In the 4–5 magnitude bin, QCN
detects 121 events compared with 303 events reported by GNS
(a 40% success rate). QCNmisses only three earthquakes out of
24 events reported in the GNS catalog with magnitudes
between 5 and 6. Only three events with magnitude over 6
occurred, and all were detected (100%).

Figure 6b shows a histogram of false-positive events by
magnitude from the offline code. Most of the false-positive
events occur in Mw 4–5 range. The magnitude relation that
Lawrence et al. (2014) used had an estimation bias centered
around Mw 4 (Chung et al., 2015). We attribute the fact that
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▴ Figure 4. Distribution of (a) difference in event origin times,
(b) difference in horizontal (epicentral) distance, and (c) difference
in depths between the NEIC or GNS catalog and version 1.x and
version 2.0 are plotted for matching events that occurred between
25 September 2010 and 1 August 2013.
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most false-positive events are in the Mw 4–5 range to the bias
in the magnitude formulation.

QCN detects a higher percentage of events within 35 km
of the epicenter of the Darfield earthquake likely due to the
large number of stations in the urban area of Christchurch
which is located between 20 and 40 km from the mainshock.
Looking at Figure 6c, we see 100% success for events with mag-
nitudes greater than 5.0 that occur within 35 km of the main-
shock. For events with magnitudes between 4 and 5, the success
rate is around 50% for epicentral distances between 15 and
35 km, and then it decreases slowly as the epicentral distance
increases. We see a relatively low percentage (<10%) of true-
positive events with magnitudes between 3 and 4 across all epi-
central distances.

PARAMETER STUDIES

There are several parameters that play an important role in
controlling the accuracy of the algorithms. We identified four

important parameters: minimum correlation count (CNTmin),
maximum correlation distance (Dmax), maximum correlation
time (Tmax), and maximum average travel-time misfit
(MISFITmax). By operating over four years and storing thou-
sands of waveforms, the QCN archive provides a comprehen-
sive suite of data for testing. Being able to reprocess four years
of sensor data in a relatively short amount of time (a single run
takes only about 12 hours) allows us to investigate how these
parameters influence the QCN system detections.

Minimum Correlation Count
To detect an event with the QCN algorithm (see Fig. 2), we
first look for correlations among the triggers. Minimum cor-
relation count (CNTmin) sets the threshold for the system to
declare an event. During initial testing, we observe that setting
the CNTmin to less than five yields many false-positive events,
whereas increasing CNTmin reduces the number of true
detections.
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▴ Figure 5. Distribution of difference in event magnitude between (a) version 1.x and (b) version 2.0 of the code and the NEIC or GNS
catalog are plotted for matching events that occurred between 25 September 2010 and 1 August 2013.

Table 2
Number of Events Detected by the QCN Real-Time Detection System and the Offline Version (Version 2.0) That Ran the Detection

Software Retrospectively

Ver1.x (Online) Ver1.x (Online) Ver2.0 (Offline) Ver2.0 (Offline)
Number of Events Ver1.x (Online) True Positive False Positive Ver2.0 (Offline) True Positive False Positive

1 September 2009 to
8 September 2010

N/A N/A N/A 94 11 83

9 September 2010 to
24 September 2010

N/A N/A N/A 42 40 2

25 September 2010 to
1 August 2013

217 212 5 245 228 17

Events found in NEIC and GNS catalogs are defined as true positive. Events defined as false positive were not validated by NEIC
or GNS catalogs.
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We simulate the offline system with four values of
CNTmin: 4, 5 (default), 6, and 7. The resulting count of
true-positive and false-positive events are plotted in Figure 7a.
The counts of both true-positive and false-positive events de-
crease as CNTmin increases. Ideally, the system should retain as
many true-positive events as possible while minimizing the
number of false-positive events. We note that whereas a
CNTmin of four detects the highest number of true-positive
events (a little over 300), it also generates the highest number
of false-positive events (175), yielding about 64% detection ef-
ficiency with one-third of the events as false positives (see
Fig. 7b). As a complementary figure, we present the percentage
of the events classified as true positives or false positives in Fig-
ure 7b. Increasing CNTmin to five, we see that the reliability
rises to about 93%. As we expected, further increases in
CNTmin results in higher reliability, although the detection ef-
ficiency decreases. For example, when CNTmin is increased to
seven the reliability is 99.1%, but yields the fewest number of
true-positive events (about 225).

Applying a higher threshold value for CNTmin increases
the time detection, adding several seconds to detection times
which is not ideal for an early warning system. This study sug-
gests a CNTmin of five is the optimal choice for the current
state of the QCN sensor distribution. Here, we define the op-
timal choice as one that maximizes the number of true-positive
detections while minimizing the number of false-positive de-
tections. We note that as the QCN sensor density increases, a
higher minimum correlation number might be preferred.

Maximum Correlation Time and Distance
Using a preliminary check for triggers occurring within a
specific time window and distance range (such as 90 s time
window and 200 km), the algorithm eliminates obviously un-
correlated triggers. The correlation time window and the
region are controlled by the maximum correlation time
(Tmax) and distance (Dmax) parameters. The default values
of these parameters are set to 90 s and 200 km in the online
code. The QCN sensors operate in 92 countries, and almost
continuously receives the sensor triggers from various locations
around the world. Increasing the Tmax andDmax above optimal
values will tend to slow down the detection algorithm and in-
crease the chance of miscorrelation, leading to more false
events.

Table 3
USB Sensor Comparision

Model
Dynamic
Range (g)

Resolution
(g)

Frequency
Range (Hz)

MotionNode
Accel

±2 �1:0 × 10−3 0.05–25

JoyWarrior ±2 �4:0 × 10−3 0.05–25
O-NAVI
60mG

±2 �6:0 × 10−5 0.05–25

(a)

(b)

(c)

▴ Figure 6. (a) Distribution of true-positive events that were de-
tected by QCN and confirmed in the GNS catalog. (b) Distribution of
false-positive events that were detected by QCN but not listed in the
GNS catalog. Variation in the percentage of true-positive events
detected by QCN versus the distance of the aftershock from the
Darfield mainshock. Events with magnitudes greater than 3 in the
GNS catalog are considered. The reference magnitudes are from
GNS catalog. Spatial search in the GNS catalog is limited to a radius
of 75 km around the epicenter of Darfield earthquake for events that
occurred between 9 September 2010 and 1 August 2013.
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A larger number of false-positive events are expected when
a larger maximum correlation distance (Dmax) or time (Tmax) is
used. We first test the system using Tmax values of 10, 15, 20,
30, 60, 90, 120, and 150 s. During all of the simulations, Dmax
is kept at 200 km (see Fig. 8a,b). For low values of maximum
correlation (Tmax < 20 s), we observe that the number of both
false-positive and true-positive detections increases as Tmax in-
creases, but for larger Tmax values the count of detections
reaches a plateau (Fig. 8a,b). Accordingly, the optimal value
of Tmax lies between 20 and 30 s for a Dmax of 200 km.

We also conduct runs with a range of Dmax values: 25, 50,
75, 100, 200, and 300 km. Although in the previous simula-
tion, we vary only a single parameter (Tmax), here we vary Tmax
along with Dmax for each simulation. Here, Tmax � Dmax=V S ,
in which V S is the average S-wave velocity, 3:4 m=s. The num-
ber of false-positive detections increases smoothly up to Tmax
of 0.25 (75 km), flattens between 0.25 (75 km) and 0.33
(100 km), and rises again sharply after 0.33 (100 km)
(Fig. 8c,d). Simulation time also increases from half a day when
Dmax is 200 km to two and a half days whenDmax is 300 km, an
indication that the real-time system would be subjected to
larger central processing unit demands for larger Dmax. A
Dmax of 100 km, with a corresponding Tmax of 30 s, is optimal
for the data set studied here.

Average Travel-Time Misfit
The QCN algorithm finds the location of an earthquake
with a 3D search that minimizes the difference between esti-
mated and observed relative arrival times at the sensors. The
algorithm defines the maximum average travel-time misfit
(MISFITmax) allowed (Fig. 2). If MISFITmax is smaller than
a user-specified value (the default value is 2 s), then the event
is considered as a true earthquake. We investigate the sensitiv-
ity of MISFITmax by testing values of 0.1, 0.25, 0.5, 0.75, 1.0,
2.0, 3.0, 4.0, 8.0, and 16.0 s.

For the above MISFITmax values, we show the counts of
true-positive and false-positive events in Figure 9a. For larger
values, MISFITmax does not influence the number of true-pos-
itive events; however, it raises the count of false-positive events,
lowering the reliability of the detection (see Fig. 9b). Limiting
MISFITmax to smaller values, the algorithm effectively trims
false events as seen in the figure. For the MISFITmax of 0.1,
0.25, 0.5 s, we see the number of false events declining, at a
slower rate, but there is a sharp decrease in true-positive events
as well. The optimal value for MISFITmax is ∼1 s, which bal-
ances the number of false positives with the number of true
positives.

We devise a probability fit that is a function ofMISFITmax
(Fig. 9c). The fit asymptotically converges to a value of 70 for
large MISFITmax. Using this functional relation, we can esti-
mate the probability that an event is a true positive and skip
the algorithm for a final check of the average travel-time mis-
fits. Because these results are based on limited QCN data, the
functional relationship needs to be tested with additional data
(such as the events recorded by different networks) for the op-
erational code. The expected relationship may vary by region
and by sensor or network type.

Two-Dimensional Parameter Space
By varying a single parameter while holding the other param-
eters fixed, we determine that CNTmin and MISFITmax,
strongly affect the code performance (Table 4). We dedicate
this section to investigating how these two variables control
the code performance when they are varied together. The
parameter space includes fCNTmin � 4; 5; 6; 7g and
fMISFITmax � 0:1; 0:25; 0:5; 0:75; 1:0; 2:0; 3:0; 4:0 sg, yield-
ing results for 32 simulations (Fig. 10).

False detections increase as the average travel-time misfit
increases and the minimum correlation count decreases; the
percentage of false events reaches its maximum value (about
50% false events) for minimum correlation count of four

(a) (b)

▴ Figure 7. (a) Count and (b) percentage of true-positive and false-positive events versus minimum correlation counts.
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and average travel-time misfit around 4 s. Decreasing the aver-
age travel-time misfit (down to 0.5) and increasing minimum
correlation count (up to 7), the system gives zero false events,
but the code misses many true-positive events (see the values of
true-positive event contour lines on the upper-left corner in
Figure 10). We qualitatively define an optimal region, framed
by the rectangle in Figure 10, in which the QCN detects a high
number of true-positive events and few false-positive detec-
tions. This result suggests that we should set MISFITmax to
0.75 or 1 s and CNTmin to five or six.

Run with the Optimal Parameters
Using the optimal parameter values, we conduct a new simu-
lation to compare the default run. The proposed parameters
are five for the minimum correlation count, 100 km for the
maximum correlation distance, 30 s for the maximum corre-

lation time, and 1.0 s for average travel-time misfit. The num-
ber of total events for both runs, including the counts of true-
positive and false-positive events, is tabulated in Table 5. We
compare the simulation on two different epochs: (1) 1 Septem-
ber 2009 to 9 September 2010, an era wherein the QCN had
less reliable sensor and received many false triggers and (2) 9
September 2010 to August 2013, a period wherein the QCN
detections stabilized.

For the default parameters, we find 94 events, 11 of which
were the confirmed earthquakes from NEIC catalog (see the
left super column in Table 5) in the first period, but 83 of them
were false events. Using the optimal parameter values, only 11
false events are found rather than the 83 of the default run,
a significant improvement. For this period, the simulation
with the new parameters misses a single true-positive event
among those detected by the default run. For the second

(a) (b)

(c) (d)

▴ Figure 8. (a) Count and (b) percentage of true-positive and false-positive events versus normalized maximum correlation times
(Tmax= �Dmax= V S�), in which Dmax is fixed at 200 km. (c) Count and (d) percentage of true-positive and false-positive events versus nor-
malized maximum correlation distances (Dmax= �Tmax × V S �), in which Tmax is computed by dividing the corresponding Dmax value by an
average S-wave velocity of 3:4 km=s.
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period, 9 September 2010 to 1 August 2013, although the new
run misses two true-positive events, it filters an additional 14
fewer false events than the default run, increasing the reliability
of the system from 93rd percentile to 98th percentile.

Modifying the parameters also effects the detection time
(event origin to detection). We show the detection time, origin
time, horizontal, and depth differences between the default and
the optimal runs in Figure 11. Because the optimal parameters
search over a smaller space-time window for correlating trig-
gers, we might also expect the time to detection to improve.
The new runs indeed have faster detection times on the aver-
age, as shown in Figure 11a, but the difference is negligibly
small. The event origin times, in over 90% of the matching
events, have differences within (0–1) s for both runs (see
Fig. 11b). Plotting the distribution of horizontal distance
differences in Figure 11c, little over 90% of the events are
within 4 km distance. Despite the fact that we have very similar

(a)

(b)

(c)

▴ Figure 9. (a) Count and (b) percentage of true-positive and
false-positive events versus misfit time tolerances. (c) Probability
of true-positive events as a function of maximum average travel
misfit time (blue line). The red dots represent the probability of
true-positive events for different misfit time tolerances (0.1,
0.25, 0.5, 1.0, 2.0, 4.0, 8.0, and 16.0 s) from the offline (version
2.0) code.

Table 4
Influence of the Parameters on the Count of True-positive

and False-positive Counts

Min. Corr.
Count Dmax T max

Misfit
Time

Influence on true-
positive count

Mild Weak Weak Strong

Influence on false-
positive count

Strong Mild Weak Strong

▴ Figure 10. Plot contrasting the percentage of false-positive de-
tections versus count of true-positive detections for different
maximum average travel-time misfit and minimum correlation
count. Background color represents the percentage of false-pos-
itive detections and the contour (dashed) lines represent the count
of true-positive events. The rectangle outlines the approximate ex-
tent of the optimal region in the 2D parametric space. The optimal
region is qualitatively defined as the region that minimizes the per-
centage of false-positive detections while maximizing the number
of true-positive detections.
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Table 5
Number of Events Detected by the QCN Offline System (Version 2.0) Using Default and Optimal Values of the Parameters

Default Parameters Optimal Parameters

Date Range Total Events True Positive False Positive Total Events True Positive False Positive
1 September 2009 to
8 September 2010

94 11 83 21 10 11

9 September 2010 to
1 August 2013

287 268 19 271 266 5

Events found in NEIC and GNS catalogs are defined as true positive. Events defined as false positive were not validated by NEIC
or GNS catalogs.

(a) (b)

(c) (d)

▴ Figure 11. (a) Detection times from the runs using default and optimal paramaters (see Table 1) and distribution of (b) difference in
event origin times, (c) difference in horizontal (epicentral) distances, and (d) difference in depths plotted for the matching events that
occurred between the runs using the optimal and default parameter values. Comparison period is between 1 September 2009 and 1
August 2013.
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results for the detection times, event times, and horizontal
locations in both codes, the depth is more sensitive to the
parameter changes (Fig. 11d).

The run using the optimal parameters reduces the number
of false-positive events and keeps the true-positive events nearly
as large as the default run. We also show that the new para-
metrization achieves almost the same event characterizations as
the default.

SUMMARY

We test and optimize the new QCN software using a new fea-
ture that enables retrospective runs. Besides being a valuable
software verification tool, the new feature allows us to inves-
tigate how some parameters in the code influence the perfor-
mance of the system.

Comparing the offline (version 2.0) and online (version
1.x) between September 2010 and August 2013, we find that,
on the average, the new code detects the events faster. Validated
on the combined GNS and NEIC catalogs, both codes yield
similar values of origin time, location, and depth. Overall,
version 2.0 provides slightly improved locations, on average.

We simulate recorded data prior to activation of the real-
time detection code. For the period from 1 September 2009 to
8 September 2010, the system exposes 11 new earthquakes and
40 new earthquakes between 9 September 2010 and 24 Sep-
tember 2010 that version 1.x missed. In the period that the
online code was active (after 25 September 2010), the offline
(version 2.0) code detects 228 true-positive events, exceeding
the detections of the operational code by 16. We note that the
majority of earthquakes examined in this study were recorded
near Christchurch, New Zealand, due to a dense aftershock
array deployed following the 2010 Darfield, New Zealand,
earthquake.

The region near Christchurch, New Zealand, is the region
where most of the earthquakes detected by the QCN system
occurred. This provides us with a real experiment to asses a
social cyber-seismic network. With about 100 volunteers, join-
ing the network part time on an average day, this experiment
answers two questions: (1) how many earthquakes the QCN
recovers and (2) how many of them QCN misses. The results
suggest that the QCN system is very effective for events with
magnitudes larger than five, and the system is able to detect
40% of eventsMw 4–5 (Fig. 6a). Only 3.5% of the events with
Mw 3–4 are detected, but this is perhaps expected due to the
low sensitivity of the sensors used (mostly 14-bit) and the dis-
tribution of sensors (most sensors were located between 20 and
35 km from the mainshock epicenter). The latest generation of
sensors (16-bit) used by QCN would likely have a higher re-
covery of Mw 3–4 events (Evans et al., 2014).

We investigated the influence of parameters in the code.
The four parameters, minimum correlation count, maximum
correlation distance, maximum correlation time, and average
travel-time misfit are the influential parameters. This study de-
termines the optimal values for these parameters based on the
performance of retrospective runs. Running the system with

these optimal parameter values, we confirm that the new code
reduces false events significantly while keeping the number of
true-positive events as high as possible. The optimal values re-
duces the number of false-positive events from 83 to 11, for the
period before 9 September 2010. For the period after 9 Sep-
tember 2010, the false events are also reduced from 19 to 5.
The reliability of the system, for this period, increases from
93rd to 98th percentile.

Although the optimal parameters will improve the accu-
racy and performance of the QCN rapid detection system for
most detections, the same parameters may need to be updated
as volunteer participation increases in future. For example, it
may be possible to further reduce the maximum average travel-
time misfit allowed as sensors may be located closer to earth-
quake sources. Currently the density of QCN sensors around
the world has large disparities with some regions of very dense
sensor coverage and others with little to no coverage; further
improvement on QCN rapid detection system may include the
ability for the system to adapt the parameters dynamically
based on the density of the local sensor distribution. In addi-
tion, prospective tests with synthetic data or waveform data
collected by more traditional sensors will be valuable for
further improving the performance of the rapid detection sys-
tem.
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